Revista Nat Geo
Registrarse
Programación TV
Disney+
National Geographic
National Geographic
National Geographic
Ciencia
Animales
Historia
Medio Ambiente
Viajes
Ciencia
Animales
Historia
Medio Ambiente
Viajes
Página del fotógrafo
Image by NASA
Fomalhaut es mucho más caliente que nuestro Sol y unas 15 veces más brillante. Situada a 25 años luz de la Tierra, está quemando hidrógeno a una velocidad tan vertiginosa que se consumirá en sólo mil millones de años, aproximadamente el diez por ciento de la vida de nuestra estrella.
Tres cinturones de escombros polvorientos anidados se extienden a 22 000 millones de kilómetros de la joven estrella Fomalhaut. Lo más probable es que los cinturones interiores hayan sido esculpidos por las fuerzas gravitatorias de planetas invisibles, como muestra esta imagen del telescopio espacial James Webb, que bloquea la luz de la estrella para revelar el material circundante.
En 800 exposiciones tomadas entre 2003 y 2004, el telescopio espacial Hubble captó lo que entonces era la vista visible más profunda y detallada del universo, conocida como el Campo Ultraprofundo del Hubble y que se ve aquí. Ahora, gracias al JWST, la comunidad científica ha observado la misma región para descubrir algunas de las galaxias más antiguas hasta la fecha.
Con el telescopio espacial James Webb, los científicos se han asomado al universo primigenio y han descubierto galaxias que existían cuando el universo sólo tenía entre 300 y 400 millones de años.
Casiopea A es el remanente de una estrella masiva que murió hace 325 años en una violenta explosión de supernova. Está formada por una estrella muerta, llamada estrella de neutrones, y una capa de material que la rodea y que se desprendió al morir la estrella. Esta imagen es una composición realizada por tres observatorios de la NASA en tres longitudes de onda diferentes: datos infrarrojos del telescopio espacial Spitzer (rojo), datos visibles del Hubble (amarillo) y datos de rayos X del Chandra (verde y azul).
Caparazones de polvo cósmico aparecen como anillos de árbol alrededor de la estrella Wolf-Rayet 140 en esta imagen del JWST. Las estrellas Wolf-Rayet se encuentran en una fase avanzada de su ciclo vital, liberando elementos pesados al espacio, y ésta forma parte de un sistema binario con una estrella de tipo O, uno de los tipos de estrella más masivos conocidos. La notable regularidad del espaciado de las capas indica que éstas se forman como un reloj durante la órbita de ocho años del sistema, cuando las dos estrellas del binario se aproximan más la una a la otra.
En cambio, la cámara de infrarrojo cercano de Webb (NIRCam) es capaz de mirar a través de los pilares polvorientos para mostrar estrellas recién formadas en tonos rosa, rojo y carmesí. La luz en el infrarrojo cercano puede penetrar las gruesas nubes de polvo, lo que permite a los astrónomos conocer mejor esta increíble escena. Los pilares son una pequeña región dentro de la nebulosa del Águila, una vasta región de formación estelar situada a 6500 años-luz de la Tierra.
El Instrumento del Infrarrojo Medio (MIRI) de Webb capta una tormenta de gas y polvo en los icónicos Pilares de la Creación. Cuando se forman nudos de gas y polvo en estas regiones, pueden colapsar bajo su propia gravedad, calentarse lentamente y acabar formando nuevas estrellas.
La imagen revela el nítido detalle del borde del cráter, con rocas individuales alrededor del exterior y en las paredes interiores. Esto indica que este cráter probablemente no es muy antiguo, por lo que no ha sido muy modificado. Esta extraña forma probablemente se produjo cuando se formó por primera vez.
Esta comparación, lado a lado, muestra las nuevas observaciones del Telescopio Espacial James Webb de la Nebulosa del Anillo Sur, a la izquierda, y una imagen compuesta de la misma nebulosa realizada con observaciones del Telescopio Espacial Hubble y el Gran Telescopio Binocular de Arizona.